151 research outputs found

    A GPU based real-time software correlation system for the Murchison Widefield Array prototype

    Full text link
    Modern graphics processing units (GPUs) are inexpensive commodity hardware that offer Tflop/s theoretical computing capacity. GPUs are well suited to many compute-intensive tasks including digital signal processing. We describe the implementation and performance of a GPU-based digital correlator for radio astronomy. The correlator is implemented using the NVIDIA CUDA development environment. We evaluate three design options on two generations of NVIDIA hardware. The different designs utilize the internal registers, shared memory and multiprocessors in different ways. We find that optimal performance is achieved with the design that minimizes global memory reads on recent generations of hardware. The GPU-based correlator outperforms a single-threaded CPU equivalent by a factor of 60 for a 32 antenna array, and runs on commodity PC hardware. The extra compute capability provided by the GPU maximises the correlation capability of a PC while retaining the fast development time associated with using standard hardware, networking and programming languages. In this way, a GPU-based correlation system represents a middle ground in design space between high performance, custom built hardware and pure CPU-based software correlation. The correlator was deployed at the Murchison Widefield Array 32 antenna prototype system where it ran in real-time for extended periods. We briefly describe the data capture, streaming and correlation system for the prototype array.Comment: 11 pages, to appear in PAS

    The Bias and Uncertainty of Redundant and Sky-based Calibration Under Realistic Sky and Telescope Conditions

    Get PDF
    The advent of a new generation of low frequency interferometers has opened a direct window into the Epoch of Reionisation (EoR). However, key to a detection of the faint 21-cm signal, and reaching the sensitivity limits of these arrays, is a detailed understanding of the instruments and their calibration. In this work we use simulations to investigate the bias and uncertainty of redundancy based calibration. Specifically, we study the influence of the flux distribution of the radio sky and the impact of antenna position offsets on the complex calibration solutions. We find that the position offsets introduce a bias into the phase component of the calibration solutions. This phase bias increases with the distance between bright radio sources and the pointing center, and with the flux density of these sources. This is potentially problematic for redundant calibration on MWA observations of EoR fields 1 and 2. EoR field 0, however, lacks such sources. We also compared the simulations with theoretical estimates for the bias and uncertainty in sky model based calibration on incomplete sky models for the redundant antenna tiles in the MWA. Our results indicate that redundant calibration outperforms sky based calibration due to the high positional precision of the MWA antenna tiles

    Lensview: Software for modelling resolved gravitational lens images

    Full text link
    We have developed a new software tool, Lensview, for modelling resolved gravitational lens images. Based on the LensMEM algorithm, the software finds the best fitting lens mass model and source brightness distribution using a maximum entropy constraint. The method can be used with any point spread function or lens model. We review the algorithm and introduce some significant improvements. We also investigate and discuss issues associated with the statistical uncertainties of models and model parameters and the issues of source plane size and source pixel size. We test the software on simulated optical and radio data to evaluate how well lens models can be recovered and with what accuracy. For optical data, lens model parameters can typically be recovered with better than 1% accuracy and the degeneracy between mass ellipticity and power law is reduced. For radio data, we find that systematic errors associated with using processed radio maps, rather than the visibilities, are of similar magnitude to the random errors. Hence analysing radio data in image space is still useful and meaningful. The software is applied to the optical arc HST J15433+5352 and the radio ring MG1549+3047 using a simple elliptical isothermal lens model. For HST J15433+5352, the Einstein radius is 0.525" +/- 0.015 which probably includes a substantial convergence contribution from a neighbouring galaxy. For MG1549+3047, the model has Einstein radius 1.105" +/- 0.005 and core radius 0.16" 0.03. The total mass enclosed in the critical radius is 7.06 x 10^{10} Solar masses for our best model.Comment: 21 pages, 24 figures, appearing in MNRAS. Software available from http://www.cfa.harvard.edu/~rwayth/lensview/Lensview_Home.htm

    The lens and source of the optical Einstein ring gravitational lens ER 0047-2808

    Full text link
    (Abridged) We perform a detailed analysis of the optical gravitational lens ER 0047-2808 imaged with WFPC2 on the Hubble Space Telescope. Using software specifically designed for the analysis of resolved gravitational lens systems, we focus on how the image alone can constrain the mass distribution in the lens galaxy. We find the data are of sufficient quality to strongly constrain the lens model with no a priori assumptions about the source. Using a variety of mass models, we find statistically acceptable results for elliptical isothermal-like models with an Einstein radius of 1.17''. An elliptical power-law model (Sigma \propto R^-beta) for the surface mass density favours a slope slightly steeper than isothermal with beta = 1.08 +/- 0.03. Other models including a constant M/L, pure NFW halo and (surprisingly) an isothermal sphere with external shear are ruled out by the data. We find the galaxy light profile can only be fit with a Sersic plus point source model. The resulting total M/L_B contained within the images is 4.7 h_65 +/-0.3. In addition, we find the luminous matter is aligned with the total mass distribution within a few degrees. The source, reconstructed by the software, is revealed to have two bright regions, with an unresolved component inside the caustic and a resolved component straddling a fold caustic. The angular size of the entire source is approx. 0.1'' and its (unlensed) Lyman-alpha flux is 3 x 10^-17 erg/s/cm^2.Comment: 13 pages, 5 figures. Revised version accepted for publication in MNRA

    Direction-Dependent Polarised Primary Beams in Wide-Field Synthesis Imaging

    Full text link
    The process of wide-field synthesis imaging is explored, with the aim of understanding the implications of variable, polarised primary beams for forthcoming Epoch of Reionisation experiments. These experiments seek to detect weak signatures from redshifted 21cm emission in deep residual datasets, after suppression and subtraction of foreground emission. Many subtraction algorithms benefit from low side-lobes and polarisation leakage at the outset, and both of these are intimately linked to how the polarised primary beams are handled. Building on previous contributions from a number of authors, in which direction-dependent corrections are incorporated into visibility gridding kernels, we consider the special characteristics of arrays of fixed dipole antennas operating around 100-200 MHz, looking towards instruments such as the Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Arrays (HERA). We show that integrating snapshots in the image domain can help to produce compact gridding kernels, and also reduce the need to make complicated polarised leakage corrections during gridding. We also investigate an alternative form for the gridding kernel that can suppress variations in the direction-dependent weighting of gridded visibilities by 10s of dB, while maintaining compact support.Comment: 15 pages, 4 figures. Accepted for publication in JA

    A GPU based Transient Dedisersion Search Engine for CRAFT

    Get PDF
    The Commensal Realtime ASKAP Fast Transient Survey (CRAFT[5]) will search the ASKAP data stream for fast (< 5sec) transient events, associated with the most extreme conditions in the Universe. The CRAFT search will run in parallel with all normal observing on ASKAP, giving a tremendous advance in the transient parameter space which can be searched. ASKAP offers high sensitivity, high resolution, and continous observations of a significant portion of the sky. However, to search across the wide field of view and at the data rates which are being provided by ASKAP is extremely challenging. Nevertheless, as reported here, we are on track to achieve the goals as laid out in the Survey Science Proposal. Using GPUs as a simple highly parallel compute-engine we can monitor the full field of view with a 5(sigma) sensitivity of ~Jy for a millisecond event covering the astronomically significant range of DMs. After that trigger detection we can download the beamformer data-buffer and image the sky at full sensitivity and spatial resolution with an arbitary frequency and time resolution

    Controlling Rayleigh-Backscattering-Induced Distortion in Radio over Fiber Systems for Radioastronomic Applications

    Get PDF
    Radio over Fiber (RoF) Systems exploiting a direct modulation of the laser source are presently utilized within important Radioastronomic scenarios. Due to the particular operating conditions of some of these realizations, the phenomena which typically generate nonlinearities in RoF links for telecommunications applications can be here regarded as substantially harmless. However, these same operating conditions can make the RoF systems vulnerable to different kinds of nonlinear effects, related to the influence of the Rayleigh Backscattered signal on the transmitted one. A rigorous description of the phenomenon is performed, and an effective countermeasure to the problem is proposed and demonstrated, both theoretically and experimentally.Comment: Accepted for publication in IEEE/OSA Journal of Lightwave Technolog

    Comparison of the Parkes and FAST FRB DM distribution

    Get PDF
    We model the fast radio burst (FRB) dispersion measure (DM) distribution for the Five-hundred-meter Aperture Spherical Telescope (FAST) and compare this with the four FRBs published in the literature to date. We compare the DM distribution of Parkes and FAST, taking advantage of the similarity between their multibeam receivers. Notwithstanding the limited sample size, we observe a paucity of events at low DM for all evolutionary models considered, resulting in a sharp rise in the observed cumulative distribution function in the region of 1000 pc cm-3 ≲ DM ≲2000 pc cm-3. These traits could be due to statistical fluctuations (0.12 ≤ p ≤ 0.22), a complicated energy distribution or break in an energy distribution power law, spatial clustering, observational bias, or outliers in the sample (e.g. an excessive DMHost as recently found for FRB 20190520B). The energy distribution in this regime is unlikely to be adequately constrained until further events are detected. Modelling suggests that FAST may be well placed to discriminate between redshift evolutionary models and to probe the helium ionization signal of the intergalactic medium
    • …
    corecore